Eckdaten

Edge Computing wird eine integrale Rolle bei IoT-Anwendungen spielen, wo Latenzzeiten und der hohe Bandbreitenbedarf problematisch sind. Es wird sicher die Cloud nicht verdrängen, sondern eine Komplementärlösung in zukünftigen IoT-Konzepten sein. Langfristig hat die Anwendung von Edge Computing das Potenzial, sich durchzusetzen, da wichtige Aspekte wie Verarbeitungsgeschwindigkeit und Sicherheit dafür sprechen.

Aus Milliarden an Daten verwertbare Informationen zu gewinnen, gehört zu den primären Werttreibern des IoT. Das Marktforschungsinstitut Gartner prognostiziert, dass 21 Milliarden Dinge bis 2020 mit dem Internet vernetzt sein werden (Gartner Symposium/ITxpo, Nov. 2015). Diese zunehmende Konnektivität von Produkten, Geräten und Maschinen stellt sehr hohe Anforderungen an die bisherige IT-Infrastruktur und stellt die Unternehmen damit vor große Herausforderungen. Dank der relativ kostengünstigen Integration von Sensoren in viele verschiedene Geräte, etwa zur Messung von Temperatur, Bewegung, Geräuschen oder des Standorts, ist ein Ende noch lange nicht in Sicht.

Aber wie lassen sich diese riesigen Datenmengen sinnvoll in der Cloud erfassen, verarbeiten, speichern und analysieren und vor allem: wie können Cloud-Server diesen massiven Input bewältigen? Die Antwort ist einfach: Indem sie es nicht alleine bewältigen, sondern ein großer Teil dieser Prozesse „an den Rand der Cloud“ verlagert wird, dort wo sich Gerät und Anwender treffen. Edge Computing nennt sich dieses alternative Architekturkonzept.

Cloud-Konzepte sind weiterhin gefragt

Beim Edge Computing werden die Daten nicht an ein zentrales Rechenzentrum gesendet, sondern auf dem Gerät selbst verarbeitet.

Beim Edge Computing werden die Daten nicht an ein zentrales Rechenzentrum gesendet, sondern auf dem Gerät selbst verarbeitet. GE

Hatten Unternehmen lange Zeit Bedenken bei der Implementierung eigener Cloud-Lösungen bezüglich Sicherheit und Anwendungsrahmen, wird die Cloud spätestens mit dem Einzug von IoT-Konzepten ins Unternehmen unumgänglich. Wenn schnelle Bereitstellung der Anwendungen, hohe Agilität und Skalierbarkeit sowie vorausschaubare und planbare Betriebskosten gefragt sind, ist eine Cloud-Lösung der richtige Ansatz. Die dezentrale Architektur von Cloud Computing ermöglicht den Fernzugriff von überall auf die abgelegten Daten und vereinfacht unter anderem die Zusammenarbeit von weit entfernten Teams an gemeinsamen Projekten. Was aber passiert, wenn Trilliarden an Endgeräten riesige Datenmengen senden, die in kritischen Fällen in Echtzeit ausgewertet werden müssen?

Intelligenz bewegt sich „an den Rand“

Konventionelle Gateways reichen in der Produktion nicht mehr aus, wenn Rechenleistung und analytische Verarbeitung extrem hoch sind.

Konventionelle Gateways reichen in der Produktion nicht mehr aus, wenn Rechenleistung und analytische Verarbeitung extrem hoch sind. GE

„Edge Computing“ oder auch „Fog Computing“ ist ein Ansatz dafür. Die Daten werden hierbei nicht über das Internet an ein zentrales Rechenzentrum gesendet, sondern auf dem Gerät selbst und damit am Entstehungsort der Daten verarbeitet, etwa im vernetzten Auto oder in einer Überwachungskamera. Edge Computing unterstützt somit Hochleistungsinteraktionen in Echtzeit, da sie weder durch Batchverarbeitung noch netzwerkbedingte Latenzzeiten ausgebremst werden. Die Geräte am Rande der Cloud kommunizieren miteinander und treffen unabhängig von ihr Entscheidungen.

Möglich wird dadurch nicht nur die Sammlung, Verarbeitung und Analyse von Daten aus der „Außenwelt“, sondern auch die umgekehrte Richtung. Das neueste Update für die Videoüberwachungskameras eines großen Gebäudekomplexes muss somit nicht mehr vom zentralen Server an jedes einzelne Gerät im Netzwerk geschickt werden, sondern nur noch an eine für Edge Computing ausgerüstete Kamera, über die daraufhin die Verteilung an alle anderen Geräte läuft.

Zugegeben, dieser Ansatz ist nicht gänzlich neu, die Umsetzung ist jedoch erst heutzutage möglich. Die Gründe sind einfach: Die Software ist mittlerweile so weit entwickelt, dass sie nicht mehr nur auf Hochleistungshardware laufen muss. Zudem ebnen die Geräte selbst den Weg für diese Form der Datenverarbeitung, indem sie Speicher, Rechenleistung und Netzwerkverbindung in sich vereinen können – all diese Komponenten, die früher nur im zentralen Rechenzentrum zu finden waren.

Mussten die Daten vorher zunächst über das Netzwerk an ein solches Rechenzentrum geschickt und dort gespeichert werden, um sie daraufhin analysieren und weiterverarbeiten zu können, wird es für die Einleitung eines Bremsvorgangs in den selbstfahrenden Autos der Zukunft schon zu spät sein. Trotz rechtzeitiger Sensorwarnung droht der Auffahrunfall. Der gesamte Prozess kann am Entstehungsort selbst, in diesem Fall im vernetzten Auto, ablaufen. Schließlich können Rechenleistung, Speicherkapazität und Anwendungen mittlerweile von einer kleinen Computing-Box in der Größe eines Laptops geliefert werden, die am Rand des Netzwerks platziert wird.

 

Auf der nächsten Seite erfahen Sie mehr über die Gründe für Edge Computing und die zentrale Rolle der Datenselektion.

Seite 1 von 3123