Prinzip des neuromorphen Computers: Schaltstellen des Gehirns werden mit magnetischen Wellen nachgebildet, die in mikroskopisch kleinen Magnetscheiben gezielt durch nichtlineare Prozesse erzeugt und aufgeteilt werden. HZDR/Sahneweiß/H. Schultheiß

Prinzip des neuromorphen Computers: Schaltstellen des Gehirns werden mit magnetischen Wellen nachgebildet, die in mikroskopisch kleinen Magnetscheiben gezielt durch nichtlineare Prozesse erzeugt und aufgeteilt werden. (Bild: HZDR/Sahneweiß/H. Schultheiß)

| von Martin Large

Bislang laufen neuronale Netzwerke als lernfähige Software auf herkömmlichen Prozessoren. Bei einem alternativen Konzept, dem ‚neuromorphen Computer‘ werden die Schaltstellen des Gehirns – die Neuronen – nicht per Software simuliert, sondern von Hardware-Bauteilen nachgebildet. Damit könnten sich in Zukunft Optimierungsaufgaben und Mustererkennung schneller und energieeffizienter erledigen lassen. Als Basis verwenden die HZDR-Forscher eine winzige, wenige Mikrometer messende Scheibe aus (magnetischem) Eisen-Nickel. Um diese Scheibe herum ist ein Goldring angebracht: Von einem Wechselstrom im Gigahertz-Bereich durchflossen, strahlt er Mikrowellen ab, die in der Scheibe sogenannte Spinwellen anregen. „Die Elektronen im Eisen-Nickel besitzen einen Spin, eine Art Eigendrall ähnlich wie bei einem Kreisel“, erläutert Dr. Helmut Schultheiß, Leiter der Emmy-Noether-Gruppe Magnonik am HZDR. „Mit den Mikrowellen-Impulsen bringen wir die Elektronen-Kreisel ein wenig aus dem Takt.“ Anschließend geben die Elektronen diese Störung an ihre jeweiligen Nachbarn weiter – was zur Folge hat, dass eine Spinwelle durchs Material jagt. Dadurch lassen sich Informationen überaus effizient transportieren, ohne dass sich Elektronen bewegen müssen, wie es heute in einem Computerchip geschieht.

Bereits 2019 stellte die Gruppe um Schultheiß etwas Bemerkenswertes fest: Unter bestimmten Umständen lässt sich die in der Magnetscheibe erzeugte Spinwelle aufspalten, und zwar in zwei Wellen von jeweils geringerer Frequenz. „Grund dafür sind sogenannte nichtlineare Effekte“, erläutert Lukas Körber, ein Kollege von Schultheiß. „Sie werden erst dann wirksam, wenn die eingestrahlte Mikrowellenleistung über einer bestimmten Schwelle liegt.“ Dieses Verhalten macht die Spinwellen zu aussichtreichen Kandidaten für künstliche Neuronen, denn es gibt eine verblüffende Parallele zur Arbeitsweise des Gehirns: Auch dessen Neuronen feuern erst, wenn eine gewisse Reizschwelle überschritten ist.

Lockvogel aus Mikrowellen

Allerdings konnten die Wissenschaftler das Aufteilen der Spinwelle anfangs nur ungenau steuern. Der Grund: „Wenn wir die Mikrowelle in die Scheibe schickten, teilte sich die Spinwelle erst mit einer gewissen Verzögerung in zwei neue Wellen auf“, erzählt Körber. „Und dieser Zeitverzug war nur schlecht unter Kontrolle zu bringen.“ Also musste sich das Team einen Trick einfallen lassen, den es nun in der Fachzeitschrift Physical Review Letters (DOI: 10.1103/PhysRevLett.125.207203) vorstellt: Zusätzlich zum Goldring wird ein kleiner magnetischer Streifen in die Nähe der Magnetscheibe gebracht. Ein kurzes Mikrowellen-Signal erzeugt in diesem Streifen eine Spinwelle. Diese kann mit der Spinwelle in der Scheibe wechselwirken und dadurch als eine Art Lockvogel fungieren: Die Spinwelle im Streifen motiviert die Welle in der Scheibe dazu, sich schneller aufzuteilen. „Ein ganz kurzes Zusatzsignal genügt, dass das Aufteilen deutlich früher einsetzt“, erklärt Körber. „Dadurch können wir den Prozess nun gezielt auslösen und den Zeitversatz kontrollieren.“

Damit ist der Nachweis erbracht, dass die Spinwellen-Scheiben im Prinzip als künstliche Hardware-Neuronen taugen – sie schalten ähnlich wie die Nervenzellen im Gehirn und lassen sich gezielt ansteuern. „Als nächstes wollen wir ein kleines Netzwerk aus unseren Spinwellen-Neuronen bauen“, kündigt Schultheiß an. „Dieses neuromorphe Netzwerk soll dann einfache Aufgaben lösen können, etwa simple Muster erkennen.“

Gesichtserkennung und Verkehrsoptimierung

Die Mustererkennung zählt zu den wichtigsten Anwendungen in der KI, etwa bei der Gesichtserkennung auf dem Smartphone. Dazu muss im Vorfeld ein neuronales Netzwerk trainiert werden; dies erfordert eine enorme Rechenleistung und gewaltige Datenmengen. Die Smartphone-Hersteller übertragen dieses Netzwerk auf einen Spezialchip, der dann im Handy verbaut wird. Doch dieser Chip besitzt ein Manko: Er ist nicht lernfähig, weshalb er beispielsweise keine Gesichter mit Corona-Maske erkennen kann.

Ein neuromorpher Computer dagegen könnte auch mit solchen Situationen umgehen: Seine Bauelemente sind im Gegensatz zu einem konventionellen Chip nicht fest verdrahtet, sondern funktionieren ähnlich wie die Nervenzellen im Gehirn. „Dadurch könnte ein neuromorpher Rechner ähnlich wie der Mensch große Datenmengen gleichzeitig verarbeiten, und zwar sehr energieeffizient“, berichtet Schultheiß. Außer für die Mustererkennung würde sich der neue Rechnertyp für ein weiteres wirtschaftlich relevantes Feld anbieten: für Optimierungsaufgaben wie die hochpräzise Routenplanung auf dem Smartphone

 

(dw)

Kostenlose Registrierung

*) Pflichtfeld

Sie sind bereits registriert?