Application Note AN-1136

Discrete Power Quad Flat No-Lead (PQFN) Board Mounting Application Note

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device construction 2</td>
</tr>
<tr>
<td>Design considerations 3</td>
</tr>
<tr>
<td>Assembly considerations 4</td>
</tr>
<tr>
<td>Mechanical test results 7</td>
</tr>
<tr>
<td>Appendix A 10</td>
</tr>
<tr>
<td>Appendix B 12</td>
</tr>
</tbody>
</table>

The Discrete Power QFN is an efficient device with a wide range of input voltage in a small 5x6mm QFN package. This package is offered only as Lead-Free (PbF), identified by a PbF suffix after the part number (for example, IRFH7932TRPbF). The main text of this application note contains guidance applicable to Discrete Power QFN package. In Appendix A, there are device outlines, substrate layouts and stencil designs for Discrete Power QFN. To simplify board mounting and improve reliability, International Rectifier manufactures Power QFN devices to exacting standards. These high standards have evolved through evaluating many different materials and designs. Although such evaluations have yielded good results, the recommendations in this application note may need to be adjusted to suit specific production environments.
Introduction

Power QFN® is a surface mount semiconductor technology designed primarily for board-mounted power applications. It eliminates unnecessary elements of packaging that contribute to higher inductance and resistance, both thermal and electrical, so that its power capabilities exceed those of comparably sized packages.

The main text of this application note contains guidance applicable to Power QFN MOSFET PbF. Then, in Appendix A, substrate layouts and stencil designs.

To simplify board mounting and improve reliability, International Rectifier manufactures Power QFN devices to exacting standards. These high standards have evolved through evaluating many different materials and designs. Although such evaluations have yielded good results, the recommendations in this application note may need to be adjusted to suit specific production environments.

Device construction

Power QFN devices are surface mount package type. This technology uses the current plastic molding technique with wire bond interconnects (Figure 1).

Figure 2 shows the contact configuration of the Discrete Power QFN device. Specific pad assignments are shown in the data sheet for each product.

Figure 2 Power QFN DISCRETE contact configuration

Figure 3 shows how Discrete Power QFN devices are labeled. Pin one is identified by the small dot. Part number, batch number and date code are provided to support product traceability.

Figure 3 Device markings
Design considerations

Substrates

The Power QFN was originally developed and evaluated for use with epoxy glass-woven substrates (FR-4). The test substrates were finished in Organic Solderability Preservative (OSP), but any of the numerous surface finishes available are suitable.

The substrate finish can affect the amount of energy required to make solder joints; this can in turn be a factor in solder quality issues such as solder balling, tombstoning (or tilt) and the formation of voids.

Substrate designs

To achieve low-loss track layouts, Power QFN devices were designed for use with layouts that are solder-mask-defined (SMD) for the pad lands (Appendix A, Substrate/PCB Layout) and non-solder-mask-defined (NSMD) for the lead lands (Appendix A, Substrate/PCB Layout). The devices were also evaluated with entirely NSMD layouts. The outline of Power QFN devices and the use of solder-mask-defined pads contribute to efficient substrate design. Large-area tracks optimize electrical and thermal performance.

If pad numbering is required to produce a component outline within the library of a CAD system, International Rectifier recommends that the conventions shown in Figure 4 and Table 1 are adopted. This makes it easier to discuss any issues that may arise during design and assembly.

Power QFN devices can be placed in parallel using simple layouts (Figure 4). International Rectifier recommends a minimum separation of 0.500mm (0.020”). The separation can be adjusted to reflect local process capabilities but should allow for rework. Micro-screen design and desoldering tool type may affect how closely devices are placed to each other and to other components.

Refer to Appendix A for device outlines, substrate layouts and stencil designs for each package size and device outline in the Power QFN range.

Figure 4 Recommended pad numbering

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Source</td>
</tr>
<tr>
<td>2</td>
<td>Source</td>
</tr>
<tr>
<td>3</td>
<td>Source</td>
</tr>
<tr>
<td>4</td>
<td>Gate</td>
</tr>
<tr>
<td>5</td>
<td>Drain</td>
</tr>
<tr>
<td>6</td>
<td>Drain</td>
</tr>
<tr>
<td>7</td>
<td>Drain</td>
</tr>
<tr>
<td>8</td>
<td>Drain</td>
</tr>
</tbody>
</table>

Table 1 Name of Pins on Discrete Power QFN
Figure 5 Placing PQFN Devices in parallel

Assembly considerations

International Rectifier designed Power QFN devices to be as easy as possible to assemble using standard surface mounting techniques. However, procedures and conditions can have a profound influence on assembly quality. It is therefore necessary to develop an effective process based on the individual requirements for the application.

Packaging

Power QFN devices are supplied in tape and reel format (*Appendix B*).

Storage requirements

Power QFN devices on tape and reel are packed in sealed, nitrogen-purged, antistatic bags. The sealed bags provide adequate protection against normal light levels but it is prudent to avoid prolonged exposure to bright light sources. The bags also provide protection from the ambient atmosphere. Devices in sealed, unopened bags have a shelf life of 1 year. Once a bag has been opened, its contents should be treated as Moisture Sensitivity Level 2 devices, as shown on the packaging labeling, to guarantee good solderability.

International Rectifier recommends that, when not in use, reels of devices should be resealed into the protective bags in which they were supplied.

Solder pastes

International Rectifier evaluated different types of solder paste from various manufacturers. The properties of pastes vary from manufacturer to manufacturer, meaning that some perform better than others. In general, high slumping pastes tend to suffer more from solder balling than slump-resistant pastes. In addition, some pastes appear to be more prone to voiding than others.

Solder alloys, metal contents and flux constituents all influence the rheology of the solder paste. This in turn influences how the paste reacts during processing. The assembly and board-level reliability of the Power QFN package have only been evaluated using lead-free pastes (Sn96.5 Ag3.0 Cu0.5).

Evaluations of lead-free devices used a reflow profile that conforms to IPC/JEDEC standard J-STD-020C (July 2004 revision). As devices may be subjected to multiple reflows when PCBs are double-sided or reworked, the evaluations used up to three reflows. International Rectifier recommends that customers should conform to J-STD-020C in setting reflow profiles and should not exceed three reflows.

Stencil design

The stencil design is instrumental in controlling the quality of the solder joint. *Appendix A* shows stencil designs that have given good results with the recommended substrate outlines. These are based on reductions of 25% for the pad lands (*Appendix A, Substrate/PCB Layout*) and 20% for the lead lands (*Appendix A, Substrate/PCB Layout*) equivalent to printing 75% and 80% of the area respectively using a stencil thickness of 0.125mm (0.005”). The design should be revised for other stencil thicknesses.

Stencils for Power QFN can be used with thicknesses of 0.100-0.250mm (0.004-0.010”). Stencils thinner than 0.100mm are unsuitable because they deposit insufficient solder paste to make good solder joints with the ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125mm-0.200mm (0.005-0.008”), with suitable reductions, give the best results.

Post-reflow evaluations can help to assess how a stencil is performing within a given process. Two main problem areas can be addressed by improving stencil design:
- **Solder balling around the perimeter of the die.**
 This can be caused by too much solder paste, in which case the stencil might need to be reduced by more than 25%. The reduction can be symmetrical but biasing it unevenly may help to prevent solder balling; the stencil designs in Appendix A have apertures moved further from the die edge for this reason. Solder balling can result from other external factors, such as the moisture content of the board and incorrect ramp rates or insufficient soak times in the reflow profile. Leadless packages like Power QFN can sometime accentuate existing deficiencies within a process.

- **Misshapen joints.** If the joints are smaller or seem to be only partially made, this might suggest that there is insufficient solder to make the joint. If, however, the joints have what appear to be additional areas extending from their edges, they are usually the result of too much solder; this almost certainly the case if solder balls are also present. Insufficient solder can also cause voiding but this is more likely to arise from other factors, including surface finish, solder paste and substrate condition.

Device placement

Inaccurate placement may result in poor solder joints or in devices being tilted and/or misaligned. Ideally, the Power QFN should be placed to an accuracy of 0.050mm on both X and Y axes but, during evaluations, devices centered themselves from placement inaccuracies of more than 0.300mm. Self centering behavior is very solder and process dependant and experiments should be run to confirm the limits of self centering on specific processes.

Reflow equipment

Power QFN devices are suitable for assembly using surface mount technology reflowing equipment and are recommended for use with convection, vapor phase and infrared equipment. PbF qualified devices have a good resistance to short-term exposure to high temperatures, making them suitable for reflow profiles of up to 260°C (measured by attaching a thermocouple to a Power QFN device).

There are no special requirements for successful assembly, but all reflow processes used in evaluation and qualification complied with the recommendations of solder paste suppliers. Using incorrect reflow profiles can cause solder quality issues such as solder balling, tombstoning (or tilt) and the formation of voids; if such problems arise, the reflow profile should be checked.

The Power QFN package is designed to have superior thermal resistance properties. For this reason, it is essential that the core of the substrate reaches thermal equilibrium during the pre-heating stage of the reflow profile to ensure that adequate thermal energy reaches the solder joint.

Inspection

For comprehensive information on inspecting board-mounted Power QFN devices, refer to the Power QFN Inspection Application Note (AN-1137).

As with all QFN packaging, the best way to inspect devices after reflow is through a combination of visual inspection of the peripheral solder joints and X-ray imaging of the connections directly under the package.

Figure 8 X-rays of Power QFN

Figure 8 shows an X-ray image of a board-mounted Power QFN device showing solder joints, alignment, and voids. A joint was considered unacceptable when the total void area exceeded 25% of the joint.
Rework guidelines

Modern rework stations for ball grid array and leadless packages often use two heating stages:

- The first stage heats the substrate, either with a conventional hot-plate or a hot-air system. This reduces the amount of heating required from the hot-air de-soldering tool, which in turn reduces the risk of damaging either the substrate or surrounding components.

- The second stage uses a hot-air system for localized heating, often with the option of unheated air for faster cooling of the solder interconnections on the replaced device; this improves the solder grain structure.

The device placement mechanism or arm usually has a hot-air de-soldering gun as part of the pick head, equipped with a vacuum cup and thermocouple. Once the solder reflow temperature has been reached, the vacuum is automatically engaged to allow the device to be removed from the substrate. This reduces the risk of causing damage by premature removal.

Most rework stations have the facility to attach a micro-stencil supplied by the vendor, with the aperture design being supplied by the user. The apertures are aligned with the pads on the board before manually screening the solder paste. Alternatively, it is possible to use a standalone micro-stencil and squeegee to apply the paste.

The objective of rework is to remove a non-functional device and replace with a functional device. International Rectifier does not recommend reusing devices removed from a substrate. To permit subsequent failure analysis, take care when removing devices not to exacerbate the existing failure.

To replace a PQFN device:

Note: If you usually bake to remove residual moisture before rework, insert your normal procedure here.

1. Heat the site to approximately 100°C (150°C for lead-free assembly) using the substrate heating stage.

Note: Pb devices are qualified for a maximum reflow peak temperature of 240°C (260°C for PbF devices). To avoid overheating the device or substrate, adjust the settings on your equipment to achieve a maximum air temperature of 300°C.

2. Lower the placement arm to bring the de-soldering tool into contact with the device. When the device and the solder interconnects reach reflow temperature, lift the placement arm to remove the device from the substrate. Discard the device.

3. Clear residual solder from the site using a blade-type de-soldering tool and de-soldering braid. Clear residual flux using a flux-reducing agent. Take care in cleaning the site: damage to the solder-resist may produce undesirable results.

4. When the site is ready, apply new solder paste with a micro-stencil and squeegee.

5. Position a new device on the vacuum tip of the placement head and lower the placement arm until the device is in contact with the solder paste.

6. Switch off the vacuum on the placement head and retract the placement arm, leaving the device in place.

7. Heat the site to approximately 100°C (150°C for lead-free assembly) using the substrate heating stage.

8. Use the de-soldering tool to heat both device and solder interconnects to reflow temperature, waiting until all the solder has reflowed.

9. Retract the arm, leaving the device in place. Cool as quickly as possible.
Mechanical test results

International Rectifier has subjected board-mounted Power QFN devices to extensive mechanical tests, conducted in accordance with industry standards and practices. The package tested were 5x6mm Power QFN. Given that all Power QFN devices are made in the same way, other Power QFN DISCRETE devices should perform to the same high standard.

This section contains summarized results for bend tests, drop tests and vibration tests. Full reports are available on request.

Bend tests

Method
Cycling bend testing was carried out in accordance with JEDEC JESD22B113, Board Level Cyclic Bend Test Method for Interconnect Reliability Characterization of Components for Handheld Electronic Products.

Boards were designed as specified in JESD22B113 with nine Power QFN parts per board. Board thickness was maintained to 0.030" (0.75 mm). The span of the support anvils was 110mm and the span of the load anvils was 75mm. The sinusoidal load was cycled at 3Hz with a 2mm displacement. Boards were cycled for 200,000 cycles.

Results
The results from cyclic bend testing are displayed in Figure 12. It is important to note that no qualification requirements are imposed in JESD22B113. As stated in the specification, “The test duration of 200,000 cycles should not be construed as an expectation of reliability; it is only a recommendation to get enough component failures to generate a valid probability failure plot or to limit the duration of testing. The reliability requirements should be separately determined between the supplier and customer.” In some respects, the Power QFN can be considered relatively robust as fewer than 60% of the components, as called out in JESDB113, failed before the test limitation of 200,000 cycles.
Drop tests

Method
Drop testing was carried out in accordance with JEDEC JESD22B111, Board Level Drop Test Method of Components for Handheld Electronic Products.

Boards were designed as specified in JESD22B111 with fifteen Power QFN parts per board. Board thickness was maintained to 0.030" (0.75 mm). The populated assemblies weighed 22 g. The calibrated acceleration was 1500Gs, 0.5 millisecond duration, half-sine pulse which resulted from a 15.5" drop onto a steel block. Figure 12 shows the shock pulse. Each drop was measured with an accelerometer. Each board was dropped 30 times.

Results
There were no failures on the 60 tested Power QFN parts.

Vibration tests

Method
Vibration testing was carried out as per MIL-STD-810F (Method 514, Proc I, Cat. 20 – composite wheeled vehicle). The board design used in vibration testing was equivalent to the design specified in JEDEC JESD22B111, with fifteen Power QFN parts per board. A total of four boards were subjected to vibration testing.

The Power QFN boards were subjected for four hours to random vibration from 5Hz to 500Hz, experiencing 1.9g_{rms} \ (18.6\text{ms}^{-2}_{rms}) with an acceleration spectral density value of 0.005g^2\text{Hz}^{-1} \ (0.48\text{ms}^{-2}^2\text{Hz}^{-1}). Figure 13 shows the bandpass filter frequency chart.

Based on experience with the interconnect failure behavior of similar packages, the devices were only subjected to out-of-plane loading (Z-direction). The test is a pass-fail test and the Power QFN devices were tested after the vibration was completed.

Results
60 devices were tested and there were no failures.

Figure 14 Bandpass filter frequency chart

There were no failures on the 60 tested Power QFN parts.
Acknowledgements
International Rectifier would like to thank:
DfR Solutions for providing the required studies needed to develop the substrate/PCB layout, solder resist and stencil designs.

Standards
JEDEC JESD22B111 Board Level Drop Test
JEDEC JESD22B113 Board Level Cyclic Bend Test
Appendix A

Model-specific data
This appendix contains the following information about 5x6mm Power QFN DISCRETE and device outline currently available:

- Device outline drawing
- Recommended substrate/PCB layout
- Suggested designs for stencils of 0.125mm (0.005”) thickness

For more details about individual devices, and to find out their size and outline, refer to the relevant product data sheet

Device outline
Figure A.1.1 shows the outline for QFN, 8L Discrete Power QFN devices. The relative pad positions are controlled to an accuracy of ±0.065mm. For full dimensions and tolerances of each device, and to find out its size and outline, refer to the relevant product data sheet and package outline drawing.

Substrate/PCB layout
Evaluations have shown that the best overall performance is achieved using the substrate/PCB layout shown in Figure A.1.2 (a and b). The footprint is 10% larger than the package pad dimensions. The toe for the leads is set at 0.275mm.

Figure A.1.2(a) QFN, 8L substrate/PCB layout

Figure A.1.2(b) QFN, 8L substrate/PCB layout
Stencil design

Evaluations have shown that the best overall performance is achieved using the stencil design shown in Figure A.1.3 (a and b). The ratio between the stencil opening size and the footprint size are as follows: Smallest Lead: 1:1; Tri-lead: 1:0.85; Quad-lead: 1:0.81

Note: This design is for a stencil thickness of 0.150mm (0.006”). The reduction should be adjusted for stencils of other thicknesses.

(dimensions in mm)

Figure A.1.3(a) QFN, 8L stencil design

(dimensions in mm)

Figure A.1.3(b) QFN, 8L stencil design
Appendix B

Tape & Reel Design

This appendix contains the Tape & Reel design that is currently being used for Power QFN.
NOTES:
1. THICKNESS: 0.046–0.058 mm.
2. STANDARD LENGTH: 300 m
3. TENSILE STRENGTH: 7.7 kg/mm sq.
4. ELONGATION: 120%
5. SURFACE RESISTIVITY: 10^10 ohms/SQ. MAX (STATIC DISSIPATIVE)
6. PEEL STRENGTH CONFORMS TO EIA SPEC. 55±2.5g
7. LUMINOUS TRANSMITTANCE: 91%
8. HAZE: 50%
9. OTHER COVER TAPE WIDTH REFER TO W14_08-04

ALL DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE STATED