EndoTrace-Kamera-Pille

(Bild: Volker Mai)

Elektronische Geräte werden stetig weiterentwickelt und in ihrer Größe reduziert – dasselbe geschieht auch mit ihren Schaltungen und letztlich auch mit ihren Komponenten. Diese Entwicklung hat den Bedarf nach der Komponenten-Miniaturisierung geweckt. 3D-Schaltungen, auch 3D-MID genannt, machen dies möglich. Sie erlauben kompaktere Designs und erhöhen zugleich die Funktionsdichte.

Die Revolution der Miniaturisierung in der Elektronik

Kleinere Geräte haben geringere Auswirkungen auf die Umwelt. Ein Laptop verbraucht beispielsweise 80 % weniger Strom als ein Desktop-Computer. Laptops haben einen Spitzenstromverbrauch von 60 Watt, Desktop-Computer hingegen von 175 Watt. Grund für diese Reduzierung des Energieverbrauchs ist die Miniaturisierung. Die Miniaturisierung hat zahlreiche Bereiche revolutioniert – angefangen bei der Medizin und dem Gesundheitswesen über die Automobilbranche bis hin zur Industrie- und Verbraucherelektronik. Faktoren, die diese Entwicklung vorantreiben:

Ästhetische Anforderungen

Wir erwarten heutzutage, dass unsere Geräte visuell ansprechend und gut gestaltet sind.

Tragbarkeit

Außerdem möchten wir, dass die Geräte leicht und bequem zu tragen sind.

Kosteneinsparungen

Die Miniaturisierung kann zwar anfangs kostspielig sein, sie ermöglicht jedoch den Einsatz von weniger Material, was auf lange Sicht Kosten einspart.

Miniaturisierung reduziert Stromverbrauch und Wärmeableitung

Kleinere Teile verbrauchen weniger Energie, wodurch die Betriebskosten gesenkt werden, die Akkulaufzeit steigt und die Produkte umweltfreundlicher werden. Da kleinere Teile weniger Strom verbrauchen, erzeugen die elektronischen Geräte weniger Hitze. Sperrige Kühlkörper oder Ventilatoren können somit eliminiert werden, was das Gewicht, die Kosten, den Stromverbrauch und den Geräuschpegel reduziert.

Nahezu alle Branchen streben heute Funktionsdichte an. Das bedeutet, dass die Hardwarekomponenten miteinander verbunden sein müssen und immer kleiner designt werden. 3D-MID ist eine Möglichkeit, diese Anforderungen zu erfüllen, indem die Masse reduziert und die Platzausnutzung optimiert werden. Gleichzeitig können diese Teile dieselben oder sogar mehr Funktionen bieten.

Was bedeutet 3D-MID?

Der Begriff „Mechatronik“ wurde 1969 von einem leitenden Ingenieur des japanischen Unternehmens Yaskawa geprägt. Er setzt sich aus den Worten „Mecha“ (Maschinen) und „Tronik“ (Elektronik) zusammen. In der Zwischenzeit hat sich die Definition von Mechatronik weiterentwickelt. Heute wird der Begriff verwendet, um die Möglichkeiten zur Nutzung von Computern, Elektronik und Mechanik für die Erstellung intelligenterer Systeme wie Robotik, Steuerungen und elektromechanischer Systeme zu beschreiben.

3D-MID steht für „Three Dimensional Moulded Interconntected Device“ (Dreidimensionaler spritzgegossener Schaltungsträger) oder auch „Three Dimensional Mechatronic Integrated Devices (Dreidimensionale mechatronische integrierte Schaltungsträger“). Dabei handelt es sich um mechatronische Vorrichtungen, die elektronische und mechanische Funktionen in einer einzigen dreidimensionalen Komponente vereinen.

Die 3D-Schaltungstechnologie von Harting ermöglicht es, die 3D-MID-Teile oder die spritzgegossenen thermoplastischen Teile direkt in elektronische Schaltungen und Komponenten zu integrieren, um diese kompakter zu gestalten und eine höhere Funktionsdichte zu erzielen. Ein Beispiel wäre eine Leiterplatte, die erheblich kleiner ist und aus Kunststoff statt aus Metall besteht.

Darüber hinaus senken die spritzgegossenen Leiterplatten die Anzahl an Produktionsprozessen erheblich, verkürzen Montagezeiten, reduzieren die Menge der erforderlichen Komponenten und somit auch die Produktionskosten.

Wie funktioniert die 3D-MID-Technologie?

Die Flexibilität der 3D-MID-Technologie erlaubt Gerätedesignern, alle Anforderungen umzusetzen. Eine dreidimensionale Komponente, die elektrische und mechanische Funktionen vereint, bietet endlose Möglichkeiten. Die Gerätedesigner geben zusammen mit ihren Anforderungen auch sehr spezifische Abmessungen an. Anschließend werden die Komponenten durch Spritzguss erstellt.

Beim Spritzguss werden Materialien wie Kunststoff erhitzt und geschmolzen, bevor sie in eine Form gegossen und abgekühlt werden, um das gewünschte Design zu erhalten. Dieses Verfahren wird häufig in zahlreichen Branchen eingesetzt, da damit schnell Teile mit komplexen Formen für die Massenproduktion erstellt werden können.

Dank seiner hohen Flexibilität ist es von den Designern einsetzbar, um praktisch jedes Teil mit den exakten Spezifikationen herzustellen. Vor der Erstellung einer Gussform kann diese auf verschiedene Arten simuliert werden, um zu prüfen, ob die Teile die Anforderungen erfüllen. Außerdem lassen sich Musterkomponenten aus der schnellen Prototypenherstellung fertigen.

Anschließend erfolgt die Laseraktivierung mittels Laser-Direktstrukturierung (LDS), ein 1996 von LPKF Laser und Electronics erfundenes Verfahren. Dabei definiert ein Laserstrahl die Leiterbahnen und ätzt das Layout direkt in die spritzgegossene Kunststoffkomponente.

3D-MID-Komponententräger
Der 3D-MID-Komponententräger ist eine Inhouse-Entwicklung von Hartung, die als Verbindungselement zwischen einer Leiterplatte und elektronischen Komponenten (wie LEDs, ICs, Fotodioden oder Sensoren) dient. (Bild: Harting)

Der spritzgegossene Kunststoff verfügt über spezielle Zusätze, die vom Laserstrahl erkannt werden können. Die Laser legen dann Bereiche frei, in denen die Leiterstrukturen schließlich platziert werden. Beim Prozess der chemischen Beschichtung legt sich Kupfer nur auf die laserstrukturierten Bereiche ab. Dadurch können die Ingenieure höchst präzise elektronische Schaltkreise erstellen. Nach der Metallbeschichtung im Kupferbad bilden sich in den Bereichen, die aktiviert wurden, Leiterbahnen, an denen die Metalle anhaften können.

Die Kombination aus mechanischer und elektrischer Hardware macht die Entwicklung und Fertigung elektronischer Geräte mit komplexen Funktionen einfacher und kostengünstiger. Damit ergeben sich eine ganze Reihe an Möglichkeiten und potenziellen hohen Kosteneinsparungen für Hersteller und Verbraucher.

Vorteile und Einsatzbereiche von 3D-MID-Technologie

Integration von mechanischen und elektrischen Funktionen in einer Komponente

bessere Zuverlässigkeit und Qualität

ihre Flexibilität lässt unbegrenzte Designoptionen zu

hilft bei der Reduzierung von Größe und Gewicht

verkürzt Montagezeiten und senkt somit die Fertigungskosten

3D-MID-Anwendungen

Kunststoff und Elektronik werden in nahezu jeder Komponente aktueller und zukünftiger technischer Ausrüstung gemeinsam eingesetzt, von der Medizin über die Automobilbranche bis hin zu Verbraucher-Gadgets. Die 3D-Technologie gilt häufig als Gamechanger für verschiedene Anwendungen, z. B.:

Sensorgeräte und miniaturisierte elektronische Verpackung

LED-Träger und Beleuchtungsmodule

Antennen und Konnektivitätsmodule

Nahezu alle Branchen können von 3D-Schaltungen profitieren, da in vielen Bereichen, wie in der Medizin, der Bedarf an Miniaturisierung hoch ist.

3D-MID in der Medizin

Die Mechatronik ist eine vielversprechende Disziplin, von der zahlreiche Branchen profitieren, insbesondere die Medizin und das Gesundheitswesen. Dank der Miniaturisierung der Elektronik durch bahnbrechende 3D-MID-Designs wurden Fortschritte in der Diagnostik und Behandlung möglich.

Antenne in einer Kapsel als Ersatz für ein Endoskop
Beispiel Antenne in einer Kapsel: Dies ist ein Ersatz für ein Endoskop. Sie schlucken die Kapsel, als wäre sie eine Tablette – was sehr viel angenehmer ist als der Einsatz eines Endoskops. (Bild: Harting)

Stellen Sie sich folgenden Fall vor: Sie benötigen eine Endoskopie. Die meisten Personen finden die Vorstellung und Erfahrung, einen langen, dünnen Schlauch mit einer kleinen Kamera daran eingeführt zu bekommen, als unangenehm. Was, wenn man dies vermeiden könnte? Durch die Verwendung von 3D-MID können Hersteller jetzt Geräte fertigen, die weniger invasiv und somit weniger unangenehm für die Patienten sind. Insbesondere, wenn es um die Überwachung und Untersuchung der Patienten innerhalb des Körpers geht. Es ist nicht mehr nötig, eine lange Endoskop-Kamera durch den Rachen einzuführen. Stattdessen können Sie heute eine nicht-invasive Kapsel schlucken, die einer Vitamintablette ähnelt. Diese Kapsel enthält eine kleine endoskopische Kamera, die Ihrem Arzt ein 360-Grad-Bild ihres Körpers übermittelt, sodass dieser ihren Verdauungstrakt darstellen kann, ohne dass dafür ein invasives Verfahren erforderlich ist. Dies ist lediglich ein Beispiel dafür, wie eine früher für den Patienten unangenehme Situation durch den technologischen Fortschritt jetzt sehr viel erträglicher geworden ist.

Die Mechatronik wird zum Beispiel auch eingesetzt, um neue Arten von Prothesen wie den Luke-Arm zu erstellen, eine gedankengesteuerte Arm-Prothese, die Patienten, die Gliedmaßen verloren haben, die Möglichkeit gibt, wieder alltägliche Aufgaben durchzuführen.

3D-MID-Technologien werden auch für die Entwicklung kleinerer medizinischer Geräte wie Hörgeräte, Implantate sowie chirurgische und zahnmedizinische Vorrichtungen eingesetzt. 3D-Leiterplatten können in jeder beliebigen Größe erstellt werden, unter Beibehaltung derselben Funktionen und Sicherheitsstandards.

Fazit

Die Möglichkeiten mit 3D-MID sind unbegrenzt. Mit der Weiterentwicklung dieser Technologie ist zu erwarten, dass weitere Organisationen sie für ihre platzsparenden Projekte integrieren und damit ihre Montageverfahren reduzieren und Kosten senken.

Anna Hardaloupas

Mepax, im Auftrag von Harting, Espelkamp

Sie möchten gerne weiterlesen?

Unternehmen

HARTING Electronics GmbH

Marienwerderstr. 3
32339 Espelkamp
Germany