Haustürschlüssel, Portemonnaie, Gesundheitskarte, Hotelkarte – künftig könnte stattdessen ein smarter Fingerring reichen. Hergestellt über ein 3D-Druckverfahren ist in ihm ein RFID-Chip integriert, der fälschungssicher, versiegelt und unsichtbar im Fingerring steckt.
Fingerring mit integriertem RFID-Chip
Wo steckt nur wieder der Haustürschlüssel – hat man ihn etwa im Büro liegen gelassen? Und möchte man an der Supermarktkasse das Portemonnaie zücken, artet auch dies oftmals in einem hektischen Gewühle in der Einkaufstasche aus, da sich das gesuchte Stück mal wieder ganz unten befindet. Ein smarter Fingerring könnte solchen Suchaktionen künftig ein Ende bereiten: In seinem Inneren verbirgt sich ein RFID-Tag, mit dem man an der Kasse bezahlen, die smarte Haustür öffnen, die Gesundheitskarte beim Arztbesuch oder die Schlüsselkarte im Hotel ersetzen kann. Denkbar wäre auch, Gesundheitsdaten wie die Blutgruppe oder Medikamentenunverträglichkeiten darauf zu speichern: Im Falle eines Unfalls hätte der Notarzt umgehend die nötigen Infos zur Hand. Entwickelt wurde der intelligente Fingerring von Forscherinnen und Forschern des Fraunhofer IGCV im Projekt Multimaterial-Zentrum Augsburg.
3D-Druck mit automatisierter Elektronikintegration
Wichtiger als der Fingerring selbst sind jedoch das Herstellungsverfahren und die Möglichkeit, während des Produktionsprozesses eines Bauteils Elektronik integrieren zu können – und zwar auch an Stellen im Bauteil, die sonst unzugänglich wären. Etwa das Innere eines smarten Fingerrings. Beim Herstellungsverfahren kann man im weitesten Sinne von einem 3D-Druck-Verfahren sprechen, im Fachjargon würde es als »pulverbettbasierte additive Fertigung« betitelt. Das Prinzip: Ein Laserstrahl wird über ein Bett aus feinem Metallpulver geführt. Dort, wo der 80 Mikrometer große Laserspot auf das Pulver trifft, schmilzt es auf und erstarrt anschließend zu einem Materialverbund – das restliche nicht belichtete Metall bleibt pulverförmig. Schicht für Schicht wird so der Fingerring aufgebaut, mit einer entsprechenden Aussparung für die Elektronik. Mittendrin wird der Prozess angehalten: Ein Robotersystem nimmt automatisch eine RFID-Komponente aus einem Magazin auf und platziert sie in der Aussparung, bevor der Druckprozess weitergeht. Durch die fein steuerbare Fertigung eröffnen sich viele Möglichkeiten, so lassen sich völlig individualisierte Ringdesigns umsetzen. Zudem ist der Chip durch den Ring versiegelt und somit fälschungssicher.
Gedruckter Miniaturlautsprecher mit Zukunftsperspektive
Er hat sechs Ecken und ist etwa so groß wie ein 1-Cent-Stück: In einem additiven Fertigungsverfahren lassen sich Miniaturlautsprecher als Teil von piezoelektrischen, mikroelektromechanischen Systemen – sogenannten Piezo-MEMS – mit einer Kombination von Tintenstrahldruck und Lasertechnik effizient und kostengünstig herstellen.
Bislang wurden in der Produktion von Piezo-MEMS konventionelle vakuum- und maskenbasierte Herstellungsmethoden eingesetzt, die allerdings insbesondere bei der Produktion von Kleinserien sehr zeit- und kostenintensiv sind. Im Rahmen des vom BMBF geförderten Projekts Generator entwickelte das Fraunhofer ILT gemeinsam mit dem Fraunhofer ISIT und dem IWE2 der RWTH Aachen daher als günstige Alternative eine Verfahrenskombination aus digitalem Tintenstrahldruck und Laserkristallisation: Nach dem Auftragen von PZT-Spezialtinte auf 8“-Silizium-Wafern folgt die Kristallisation mittels Laserstrahlung bei lokalen Temperaturen von über 700°C. Für Qualität sorgt ein temperaturgeregelter Prozess, der die Temperaturschwankungen auf ± 5°C begrenzt.
Aus mehreren 20 bis 30 nm dünnen PZT-Schichten wird ein mehrlagiger Aktuator mit einer Gesamtschichtdicke von 2 bis 3 µm aufgebaut. Abwechselnd bauen sich übereinander insgesamt bis zu 30 Schichten aus Funktionskeramik- und Elektroden zu einem Mikrolautsprecher auf. Dank dieser Konstruktion soll der Aktuator eine bessere Performance und höhere Wiedergabequalität als übliche Aktuatoren aufweisen. Dabei greifen PZT-Schichten und Elektroden-Schichten wie zwei sehr feine Kämme ineinander. Durch die schnelle Laserbearbeitung der Schichten sinkt die sonst minutenlange Bearbeitungszeit je Schicht auf wenige Sekunden. Als Elektrodenmaterial verwendeten die Wissenschaftler statt des gängigen und sehr teuren Platins die elektrisch leitende Keramik Lanthan-Nickel-Oxid (LNO). Durch den Verzicht auf metallische Komponenten kann die Haltbarkeit dieser rein keramischen Multi-Material-Stacks deutlich gesteigert und die Materialkosten gleichzeitig gesenkt werden.
Legt man nun eine Wechselspannung an diesen Multi-Material-Stack an, verformen sich die PZT-Schichten in Bruchteilen von Sekunden und regen dadurch den ganzen Stack zur Schwingung an. Da das ganze System nur wenige µm dick ist und dadurch eine sehr geringe Masse hat, lassen sich so akustische Signale vor allem im Hochton-Bereich ausgezeichnet übertragen.
Sensoren aus dem Drucker
Der 3D-Druck gewinnt immer mehr an Bedeutung bei der industriellen Fertigung. Er macht es nicht nur möglich, sehr komplexe Formen herzustellen, die mit herkömmlichen Verfahren kaum zu verwirklichen wären. Mit seiner Hilfe lassen sich auch kleine Losgrößen wirtschaftlich produzieren. Allerdings stellte die Integration von elektronischen Komponenten und somit auch die Herstellung von individualisierten Sensoren bisher eine Herausforderung dar.
In der Automatisierungstechnik werden induktive Näherungssensoren in großer Stückzahl eingesetzt, um metallische Objekte berührungslos zu erkennen. Sie können in industriellen Anwendungen jedoch nicht nur registrieren, dass sich ein Bauteil angenähert hat, sondern auch in welcher Entfernung es sich befindet. Allerdings gibt es noch keine induktiven Näherungssensoren, die sich mit ihrer Gehäuseform in eine bestimmte Umgebung einpassen, etwa in einen Roboterarm-Greiferfinger.
Warum also nicht das Gehäuse des Sensors aus Kunststoff drucken, um es in beliebiger Form herstellen zu können? Genau das hat ein Forschungsteam vom Zentrum für additive Produktion am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA nun getan. Unterstützt wurde es dabei von Mitarbeitenden des Anlagenherstellers für die Kunststoffverarbeitung Arburg sowie des Sensor- und Automatisierungsspezialisten Balluff. Für das Gehäuse des Sensors war ein Kunststoff mit hoher Durchschlagfestigkeit und flammhemmenden Eigenschaften gefordert. Die Fachleute wählten den teilkristallinen Kunststoff Polybutylenterephthalat (PBT), der standardmäßig als Spritzgusswerkstoff für die Herstellung von Elektronikgehäusen eingesetzt wird. Allerdings wurde eine solche Materialtype bislang nicht für den 3D-Druck verwendet, sodass Pionierarbeit nötig war.
Leiterbahnen im 3D-Druck
Der Kunststoff kam als Granulat in den sogenannten „freeformer“, das industrielle additive Fertigungssystem von Arburg. Dieser verfügte über eine Materialaufbereitung mit spezieller Plastifizierschnecke. Nach dem Aufschmelzen des Standard-Granulats folgte das werkzeuglose Freiformen: Ein hochfrequent getakteter Düsenverschluss trug kleinste Kunststofftropfen aus, die mit Hilfe eines beweglichen Bauteilträgers exakt positioniert werden konnten. Auf diese Weise entstanden im freeformer Schicht für Schicht dreidimensionale Bauteile mit Kavitäten, in die während des Druckprozesses Bauteile eingelegt werden konnten. Um dies zu ermöglichen, unterbrach der freeformer den Bau-prozess automatisch in den jeweiligen Schichten, sodass es möglich war Spule, Platine und Stecker passgenau zu integrieren. Mit einem Dispenser konnten im Anschluss, in einer separaten Anlage, die Leiterbahnen aus Silber im Inneren des Gehäuses erzeugt werden. Schlussendlich war es notwendig, die Kavitäten mit dem freeformer zu überdrucken und mit Polyurethan zu vergießen. Team stellte auf diese Weise mehr als 30 Demonstratoren der individualisierten Sensoren her, um sie anschließend auf Herz und Nieren zu testen: Die Bauteile mussten etwa Temperaturwechsel und Vibrationen verkraften, sie mussten wasserdicht sein und einen elektrischen Isolationstest bestehen. Durch Optimierung von Design und Herstellungsprozess wurden die Tests am Ende erfolgreich absolviert.
Die Autorin
Petra Gottwald, Chefredakteurin productronic, nach Unterlagen der Fraunhofer Institute IPA, ILT, ISIT, ICGV
Sie möchten gerne weiterlesen?
Unternehmen
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Nobelstr. 12
70569 Stuttgart
Germany
Fraunhofer-Institut für Siliziumtechnologie ISIT
Fraunhoferstraße 1
25524 Itzehoe
Germany